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ABSTRACT
Effective communication between nurses and physician teams on the internal
medicine unit is crucial for high quality, safe, and efficient patient care. In our hos-
pital of interest, a large academic health sciences centre, the physical layout of the
unit, current admission process, and the presence of three separate physician teams
contribute to uneven workload and communication barriers. We address this by
physically co-locating each physician teams’ patients so as to facilitate physician-
nurse collaboration, and more evenly distribute workload across all three teams.
Based upon one year of real-world data, we developed a simulation model of in-
patient flow through the internal medicine unit and determined the impact of two
proposed changes: co-locating each team’s patients, and new admission rules for how
patients are assigned to those teams. Under the new arrangement, each physician
team would interact with roughly half the number of nurses, and nurses in turn
would have fewer individual team members with whom to communicate, thereby
improving effective communication and increasing time for direct patient care for
both physicians and nurses.
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1. Introduction

A common problem for physician teams working in inpatient settings is the time it
takes to collaborate with the nursing staff involved in the care of their patients. When
a particular team’s patient load is spread over a large number of nurses, this is more
time consuming, and thus negatively impacts the amount of time available for direct
patient care. This problem arises naturally as a function of the current bed assignment
policy at University Hospital, an academic health sciences centre in London, Ontario.
Concerns over these issues motivated the work for this paper, which considers changes
to the physician team and bed assignment policies in the hope that improving the



efficiency of the system would translate into improved patient care.
We sought to develop a patient flow procedure that would retain current staffing

levels while focussing on physician and nurse efficiencies simultaneously. A discrete
event simulation model of the proposed changes was developed using the open source
Python programming language (see Python 2017). By physically co-locating patients
and employing a novel method for assigning patients to physician teams, we report
a minimally disruptive administrative strategy that is expected to result in better
patient care.

2. Literature review

The sheer volume of papers on simulation in health care is so large that one could,
perhaps, suggest that it would be appropriate to have a survey paper about the survey
papers in the field. Surveys include England and Roberts (1978), Lehaney and Hlupic
(1995), Jun et al. (1999) and Fone et al. (2003). These last two are considered by Günal
and Pidd (2010) to be “more comprehensive and systematic than their predecessors”
(p. 43). Günal and Pidd’s own review considers many dozens of papers up to 2008; and
(among other things) finds that two common tendencies with the simulation models
they review are that they are frequently unit specific, focussing on only one aspect of
the hospital, and facility specific, making it hard for the conclusions to be extended
to sites other than the one where the study was carried out. They also comment on
the lack of implementation of simulation study conclusions as a continuing problem,
more than 25 years after the problem was noted in Wilson (1981).

Jacobson et al. (2006), as a book chapter, has the space to provide greater depth
in its review of the literature during the period 1965 to 2004, with the dominant bulk
of the review focussing on papers from the latter 20 years of that period. Jacobson
et al. (2006) complement the unit-specific view with respect to patient flow and related
issues, with a detailed section on health care asset allocation, including issues in sizing
and planning, facility planning, and nurse / physician scheduling.

Brailsford et al. (2009) classify 342 papers pertaining to analytical approaches in
health care from the period 1952-2007, with the bulk coming after 1990. Almost two-
thirds are classified in the fields of statistical analyses and modelling, with others
belonging primarily to the fields of mathematical programming, qualitative studies,
simulations, and a pool of other areas. About one sixth were simulation studies.

The references in Hu et al. (2018) provide many examples of how simulation tech-
niques have aided the study of patient flow in hospital emergency departments. Most
commonly, the goal is to reduce patient length of stay and waiting time by adjusting
how patients move through the ward (Klein and Reinhardt 2012; Powell et al. 2012;
Rasheed et al. 2012). Shenoy et al. (2018) consider how to assign patients efficiently to
beds given infection restrictions, while de Bruin et al. (2007) look at optimizing bed
allocation to explore bottlenecks in patient flow. Best et al. (2014) and Rossetti et al.
(1999) investigate optimizing physician staffing based on patient occupancy levels,
while Agor et al. (2016) do so through the lens of a novel proxy metric for physician
workload. Sarno and Nenni (2016), Siddiqui et al. (2017), and Sundaramoorthi et al.
(2010) all look at variations of adjusting nurse staffing levels to standardize the work-
load distribution. Acar and Butt (2016) also look at nursing assignments, but with
specific consideration for the distance nurses travelled between patients.

Much closer to the present work is Mandelbaum et al. (2012), which addresses the
issue of fair routing of patients. The authors employ a specialized queueing model
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with heterogeneous servers to address the reality that differing individuals or teams
render treatment at different rates. Their key contribution is the introduction of the
Randomized Most Idle (RMI) policy for assigning customers (patients) to available
server pools (wards) on the basis of the number of idle servers in each group. This has
the advantage over a Longest Idle Server First (LISF) policy in that the latter requires
detailed information that is not usually available to decision makers in real time.

3. Current process

The internal medicine inpatient teaching unit – hereafter referred to as the unit –
treats large volumes of patients with acute medical illness requiring hospital admission.
Most patients are admitted to internal medicine through the emergency department,
although some are transferred from other inpatient services. Most also suffer from
multimorbidity and thus are considered to be among the most complex patients to
care for in the hospital. This section details the important characteristics of the unit
along with how patients flow from admission to discharge.

3.1. Unit layout

The unit has 72 total beds; 60 on the fourth floor and 12 on the sixth floor. The fourth
floor is the main internal medicine unit and is the preferred locale for treating high
acuity patients. It has 10 private rooms (single bed per room), 18 semi-private rooms
(2 beds per room), and 4 ward rooms (3 or 4 beds per room). The sixth floor has 5
private rooms and 4 semi-private rooms (although only 7 semi-private beds, as shown
in Figure 1). In addition, there are 6 ‘decant’ beds on the sixth floor. Decant beds are
intended to offload patients temporarily from the emergency department during the
day while they wait for one of the 72 beds to open. In reality decant beds often remain
open overnight, with one or two patients present.

Figure 1. The internal medicine inpatient teaching unit beds on the fourth and sixth floors of University

Hospital. Grey beds indicate decant.

3.2. Staffing levels

The unit is served by three distinct physician teams. This is done partly to ensure
equal workload and breadth of experience for medical students and resident doctors,
who complete the initial medical assessment of new patients. On weekdays, from 8
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a.m. to 5 p.m., each team consists of one attending physician, one third year resident,
one second year resident, three to four first year residents, and three medical students.
During the same hours on weekends, each team has one attending physician, one second
or third year resident, and one medical student or first year resident. On all days of
the week, from 5 p.m. to 8 a.m., the on-call team includes one first year resident or
medical student from each of the three teams, plus one second or third year senior
resident who oversees the other three more junior trainees.

Nursing staff provide most of the direct patient care. Registered nurses (RNs) may
be assigned to any patient on the unit, while registered practical nurses (RPNs) typi-
cally care for lower acuity patients; these RPNs cannot perform some procedures. Each
24-hour period consists of a day shift from 7 a.m. to 7 p.m. and a night shift from 7
p.m. to 7 a.m. Prior to each shift the charge nurse assigns the incoming nurses to their
patients. This is done using a subjective process with consideration of skill level, years
of experience, and personality. Table 1 outlines the number of RNs and RPNs on the
unit at all times. Regardless of time of day, a nurse will always be assigned patients in
nearly adjacent rooms. As the unit has not reported any difficulty in staffing for these
shifts, we have not addressed staffing matters in this study.

Table 1. Nursing staff levels by floor and time of day.

7a.m. - 7p.m. 7p.m. - 7a.m.

Fourth Floor
RNs 13 9

RPNs 2 1

Sixth Floor
RNs 3 2

RPNs 0 0

As seen in Figure 1, the fourth floor of the unit comprises three hallways. Each of
the three physician teams may have patients in any hallway and on both the fourth
and sixth floors. How these beds are used among the teams is one of the issues we
address in the analysis which follows.

3.3. Unit statistics

University Hospital provided a dataset containing summary statistics (mainly means
and some variances) of various performance metrics for all patients who were admitted
to internal medicine between March 2016 and April 2017. These are routinely collected
administrative data with no patient-identifying information.

The admission data which the hospital provided was limited to the annual number of
patients admitted to internal medicine, along with the percentage of patients admitted
during the six different time slots. Table 2 contains the corresponding rates calculated
from these percentages. As no information on seasonality or day to day variability was
provided, we consider the average admission rates applicable for each day of the week.

A patient’s origin is defined as where they are in the hospital when the decision
to admit them to internal medicine is made. Most commonly, this is the emergency
department, although patients can be admitted from elsewhere in the hospital. Ad-
ditionally, patients from other units who are occupying a unit bed off-service are not
actually admitted to internal medicine. While these off-service patients impact inter-
nal medicine patients and thus affect performance metrics indirectly, their values are
not directly included in the calculation of these metrics. The status of a patient is
defined to be the minimally required type of bed they can use. That is, a ward patient
can use a private or semi-private bed, but a private patient must use a private bed.
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Table 2. Rate of patients admitted to

internal medicine per hour.

Time Period Admission Rate

00:00 – 03:59 0.48
04:00 – 07:59 0.24
08:00 – 11:59 0.63
12:00 – 15:59 0.83
16:00 – 19:59 0.83
20:00 – 23:59 0.67

This is approximated by the number of patients admitted with Clostridium difficile,
Methicillin-Resistant Staphylococcus aureus infection, or droplet precautions. There
was no data available on patients’ insurance status to further determine room pref-
erences. Finally, the acuity of a patient is classified as either high, moderate, or low,
following the guidelines of the College of Nurses of Ontario (2018). This acuity data
was more difficult to obtain and consequently is only from a sample of 7 days worth
of patients and expert opinion.

The data does not exactly specify these proportions, so we obtained additional
input from the unit physicians. For instance, the number of patients admitted from
the hospital’s ICU was overrepresented in the data as it also counted medicine patients
who were briefly transferred there. Thus, the percentages in Tables 3–5 are a hybrid
of the given data and expert opinion.

Table 3. Percentage of patients requir-

ing each bed type. Referred to as status.

Bed Type Patient Percentage

Private 20%
Semi-Private 25%

Ward 55%

Table 4. Percentage of patients admitted from each

location. Referred to as origin.

Location of Admission Patient Percentage

Emergency Department 81.0%
Non-Medicine 13.7%

Intensive Care Unit 4.6%
Other 0.7%

A patient’s length of stay (LOS) is defined to be the time from when they are ad-
mitted to internal medicine until they are discharged, regardless of when they actually
enter a medicine bed. The data recorded for LOS was in whole day units, with a
mean of 5.3 and standard deviation of 5.7. Additional data specified the percentage
of discharge orders sent for each hour of the day, which is displayed in Table 6. The
mean time between a discharge order being placed and the patient being discharged
was observed to be 2.1 hours.

3.4. Unit procedures and operations

Regardless of time of day, all referrals from the emergency room are received, triaged,
and seen by a designated senior medical resident. Between 8 a.m. and approximately
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Table 5. Percentage of patients admitted

with each acuity level. Referred to as acuity.

Acuity Level Patient Percentage

High 5%
Moderate 60%

Low 35%

Table 6. Percentage of patients discharged during each hour of the day.

Hour 00 01 02 03 04 05 06 07

Patient Percentage 0.00 0.00 0.00 0.00 0.00 0.09 0.09 2.97

Hour 08 09 10 11 12 13 14 15

Patient Percentage 4.83 7.81 17.47 23.42 10.41 12.27 8.92 4.46

Hour 16 17 18 19 20 21 22 23

Patient Percentage 3.72 1.12 1.49 0.37 0.28 0.09 0.09 0.09

6 p.m., they will see the patients on their own and arrange for their admission to one
of the teams. After 6 p.m., new referrals will be assigned to one of the three on-call
junior trainees and subsequently admitted to the physician team they are assigned
to. For the most part, this current process involves evenly cycling so that every third
patient is assigned to the same junior trainee and therefore the same physician team,
which we refer to as the “rolling basis” method. In practice there are deviations to
this protocol, due to information loss at shift changes and subjective decision-making
on the part of the designated senior medical resident.

Once the senior medical resident has assigned the patient to a physician team and
requested admission to internal medicine, the bed assignment process is handled ad-
ministratively. Certain criteria at the time of admission will impact the type of room a
patient is assigned. For instance, patients with a Clostridium difficile infection require
a private room to avoid spreading the infection. However, due to volume demands,
private rooms are often occupied by patients who do not require them. If there is
no suitable available bed, the patient may be placed in a decant bed if there is one
available during daytime hours. Otherwise, they may be placed in an off-service bed
elsewhere in the hospital. If none of these options are available, the patient will remain
in the emergency department until an appropriate unit bed becomes available.

Unit beds are vacated when a patient is discharged, transferred, or has died. Once
vacated, the patient area and bed are cleaned. The cleaning process can take up to
two hours depending on whether the patient had a contagious disease that can be
acquired environmentally. The bed is then available for the next suitable patient who
is waiting, or will remain empty until a suitable patient is admitted. Patients waiting
for a bed are prioritized based on where they are currently located. Patients in the
emergency department or intensive care unit receive top priority, followed by patients
in decant beds, then patients who have been placed off-service, and finally patients
admitted to other services whose units are fully occupied.

4. Issues and proposed changes

As noted earlier, one source of inefficiency for internal medicine teams is the number
of nurses with whom they interact while performing rounds on their patients. While
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each nurse will be assigned four patients during the day, this assignment is done
at present without consideration for which physician team is caring for the patients
involved. Thus, a nurse could have patients from each of the three teams, thereby
imposing an additional burden to track the physicians or medical students in charge
of their patients. Instead of having one conversation about three or four patients,
each nurse might have a separate conversation with each team from which they are
assigned patients. Limiting the number of nurses each physician team interacts with by
assigning them to a greater proportion of a single team’s patients would reduce this
consultation overhead. Dobson et al. (2009) address the impacts of communication
barriers, albeit in a primary care setting.

The number of nurses a team has caring for their patients is influenced by how many
patients the team has, which can vary significantly. To account for potential noise
introduced by census variations, we define the metric patients per nurse (PPN) for
each team. This is calculated four times a day (immediately prior to and immediately
following both nursing shift changes) by taking the number of patients a team has in
the 72 medicine beds, and dividing by the number of nurses assigned to that team’s
patients. This metric is used as a proxy for nursing efficiency, where a high PPN value
is preferable, signalling a lower number of nurses for the team to collaborate with. At
shift change, the patients sharing a nurse will change, which will affect the PPN value.
This change is likely not going to be large, but calculating before and after allows us to
evaluate how PPN evolves over the shift without the added noise from a shift change.

Another objective for the physician teams is to strive to ensure that residents and
medical students see a comparable number of patients each day for educational pur-
poses. The practice of assigning teams on a rolling basis ensures that each team sees
approximately the same number of new patients in a week. However, the large variabil-
ity in patient length of stay means that the distribution of patients among the three
teams at a given time can be very uneven. This means that the total amount of daily
work, driven by the total number of inpatients, is not evenly distributed across teams
despite their equal staffing levels. In an effort to address this, we define the metric
team census variance (TCV). In the dataset provided, the number of patients on each
team is only recorded in the morning of each day, rather than at the midnight census
as with much of the other data. For consistency, the model also includes a morning
census to record TCV. Each instance of this metric is simply the variance of the three
team census values in the morning, giving a single number for each day; these instances
can then be averaged over every day to see the average TCV for a given year.

From both a patient and hospital flow perspective, it is desirable to assign the
patient to the first available bed. From the team’s perspective, it is desirable to assign
the patient to the team with the lowest census, to ensure that each team gets a
comparable workload each day. Fortunately, these goals are positively correlated. The
rule we have implemented, which we refer to as the co-location method, is as follows.
Each of the 72 medicine beds is assigned to a team as per Figure 2. Primarily, we assign
a new patient to the first available bed. If multiple beds are available, the patient goes
to the one associated with the team that has the lowest census at that time. When
no bed is available upon admission, the patient will be initially assigned a team using
the lowest census method. Once a bed becomes available, the patient is moved and
reassigned, if necessary, to the team associated with this bed. Importantly, this rule
does not change the charge nurse procedure for scheduling nurses or the physician
team staff levels.

Our research goal is to determine if implementing the co-location method will yield
an increase in PPN values and a decrease in TCV while not negatively impacting
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the congestion of the unit or the waiting time in the emergency department. By still
allowing patients to take the first available bed we expect to see no increase in waiting
time or bed utilization rates. Since each team’s patients will now be in adjacent rooms,
they are much more likely to be sharing a nurse (as nurses are assigned a patient based
on this criteria). This will directly increase the team’s PPN value, which we hypothesize
will improve collaboration efficiency for physicians and nurses.

Figure 2. Proposed team assignment by bed for the fourth and sixth floors at University Hospital.

5. Simulation model

We chose to implement this simulation model in Python both for speed of computation
and due to the first author’s familiarity with the language. We investigated Python’s
simulation library SimPy, as well as the commercial software Simul8, but ultimately
decided that these were unnecessary for what we required, and so the simulation logic
was written from scratch. The only libraries used were NumPy for random number
generation and Pandas for data storage and manipulation.

At the core of discrete event simulation is the calendar of events, which contains
future actions to be simulated and is continuously updated as events are processed
and new ones are generated. For this model, key events considered in the calendar are
patient admissions, patient discharges, a bed being cleaned, and the start of a nursing
shift. These are outlined in Figure 3, and follow a similar basic structure to the one
described by Hamrock et al. (2013).

When running our simulation, the model begins from an empty state; none of the
medicine beds are occupied and nobody is waiting in the emergency department. It
is then run for 26 weeks of warm-up, followed by 52 weeks of data collection. This
process is repeated 20 times, so that 20 independent years of data have been collected.

This warm-up period is consistent with the length prescribed by Welch’s method
(Law 2007), which is determined by plotting a smoothed moving average of multiple
runs and visually evaluating a typical amount of time until convergence. Law also
suggests an iterative algorithm to obtain a number of runs that results in error below
a certain threshold for key metrics of interest. We deemed 20 runs to be an acceptable
balance between this error level and time constraints for running the simulation.

Since the dataset provided which we described in Section 3.3 only contains aggre-
gate information, determining which distributions to use for generating the random
values was a process of intuition and observing how well the model output matched
the expected results. An admission event occurs when a patient inter-admission time
is generated using a non-homogeneous Poisson process, which is a common modelling
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Figure 3. Flow chart for modelling patient flow through the internal medicine unit at University Hospital.

assumption for rare processes occurring in a relatively large population. Status, ori-
gin, and acuity provide further context for a specific patient’s care requirements and
determine how they will be moved through the model. The multinomial distribution
was the logical choice for classifying patients for each of these three parameters. In re-
ality, a patient’s status and acuity may change multiple times during their treatment.
However, due to the lack of data on these changes, they have been treated as static
for the entire length of stay after being initialized at time of admission.

Upon being generated in the simulation, a patient is assigned to one of the three
physician teams unless they are a non-medicine patient being placed off-service into an
internal medicine bed. Team assignment, along with medicine bed assignment, is done
according to the version of the simulation being run. For admission occurring between
7 a.m. and 7 p.m., when there is no bed available, the admitted patient will be placed
in one of the sixth floor decant beds if possible. If this is also unavailable, a patient
who has been admitted from the emergency department or intensive care unit may be
placed off-service in an inpatient bed somewhere else in the hospital. After all of these
options have been exhausted, the patient will remain in the emergency department
until either a decant bed or internal medicine bed becomes available. Note that all
patient transportation times are considered negligible in the model.

Once a patient has been admitted to internal medicine, their treatment begins
immediately regardless of their location (including the emergency department). For
simplicity, we assume this doesn’t affect overall treatment time, so the patient’s total
length of stay in the model is determined at the time of the patient admission event.
This is calculated as the sum of the geometrically-distributed whole number of days
plus the fractional part of a day based on the hour when the discharge order is placed.
Table 6 is used as the basis for the determination of the fractional part’s duration. At
the instant that their length of stay is completed, a patient discharge event is triggered.
For the purposes of this model, all discharge events are treated in the same fashion
regardless of whether they are discharges, transfers, or deaths.

When assigning nurses to patients prior to each shift, the charge nurse will consider
factors such as the compatibility of patient and nurse personalities. However, such
aspects are too subjective for inclusion in the model, so our simulation only considers
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whether a nurse is an RN or an RPN when determining the nurse assignment for each
shift. Consequently, the model only prescribes which beds are sharing a nurse and the
type of nurse, without indicating which specific nurse is caring for these beds. Since
the additional specification does not affect PPN or TCV, the model adequately reflects
the essential aspects of the nurse assignment process.

6. Model verification

There were many variables provided in the dataset used to quantify the model output
and verify that the simulation adequately approximates reality for our purposes. This
section highlights a few of these key metrics that are indicative of the congestion
experienced in the unit. The utilization metrics are defined to be the percentage of
the 72 internal medicine beds that are occupied. For floor utilization, this considers
all patients in beds, while for medicine utilization only beds with an internal medicine
patient in them (and thus not an off-service patient) are counted.

Table 7. Performance metrics for the reference simulation compared to the values observed in the

dataset provided.

Performance Metric Observed Expected Value Simulation 95% CI

Avg. Waiting Time∗ (Hrs.) 6.4 (6.7, 7.4)
Avg. No. of Admitted Patients Waiting 3.4 (3.0, 3.3)
Avg. Floor Utilization Rate 94.8% (94.3%, 95.2%)
Avg. Medicine Utilization Rate 83.5% (82.1%, 83.2%)

∗Defined to be the time it takes for a patient to leave the emergency department after admission to
internal medicine.

In the performance metrics of Table 7, the average time to leave the emergency
department has been calculated as the usual average over all the patients who were
admitted to medicine during the study period. However, the occupancy and utilization
rates have been based upon information that is only available from the daily midnight
census. Therefore, daily snapshots at midnight were taken from the simulation runs
so as to provide a meaningful comparison.

Clearly, the simulation doesn’t capture everything that is relevant to the operation
of the unit, as three out of four confidence intervals do not contain the expected value
we have observed. This is not unexpected due to the limited information on parameter
distributions provided in the dataset, so we are more interested in verifying the model
against these parameters. We notice that the parameter estimates are each individually
in the right “ballpark” as those from the dataset, and if the intervals were loosened
to the 99.5% level then all the observed values would be captured. Thus, we have
concluded that the model is useful for decision making purposes.

Since the model is not able to recreate the values from the dataset, we cannot infer
that any changes to the model would output the same nominal values that would be
observed from such a change in real life. This is compounded by the fact that the given
data is both coarse and only reports on a year of operation, which means it is likely
that the values which we come up with in the simulation will be biased relative to the
long run averages seen on the unit. Instead, we compare the proposed changes with
the reference simulation to see if the two simulations are statistically different from
each other. From this, we conclude the direction of the impact on performance metrics
from introducing co-location in reality, mindful that the precise values we obtain are
not likely to be replicated in real life.
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7. Results

Below, we present the results of testing the co-location method relative to the refer-
ence simulation rather than the original dataset, which contained limited amounts of
information. Additionally, we use a common random numbers approach, which means
for each run we test the same sequence of patient admissions under the two bed/team
assignment policies. The performance of the co-location method was assessed using
the following metrics: emergency department waiting time, bed occupancy rate, PPN,
and TCV. Ultimately, we obtained results that confirmed improvements in PPN and
census variance without adversely impacting emergency department waiting time or
bed occupancy rate.

7.1. Congestion

Table 8 compares the performance of the co-location method to the reference simula-
tion for waiting time and occupancy level. We wish to determine if there is a statistical
difference between these two patient assignment methods for each metric. Since the
same sequence of inter-admission times is used to compare the methods for an indi-
vidual run, and averages are approximately normally distributed, it is appropriate to
use a paired t-test to determine whether the average difference is non-zero. As the p
values indicate, we see little evidence to reject the null hypothesis, which is that there
is no difference.

Table 8. Performance metrics for the co-location method compared to the values from the reference simu-

lation. P values refer to a one-tailed paired t-test of HA : µco-location > µreference.

Performance Metric Reference Simulation Co-location 95% CI P Value

Avg. Waiting Time (Hrs.) 7.1 (6.8, 7.4) > 0.05
Avg. No. of Admitted Patients Waiting 3.1 (3.0, 3.3) > 0.05
Avg. Floor Utilization Rate 94.7% (94.3%, 95.1%) > 0.05
Avg. Medicine Utilization Rate 82.7% (82.2%, 83.1%) > 0.05

7.2. Patients per nurse

Co-location leads to a significant increase in PPN values for each team, as seen in
Table 9. For each team and at all times, a paired t-test provides evidence to reject the
null hypothesis of no difference between average PPN values with a significance level
< 0.01. We note that Team C now has a lower PPN than Teams A and B at night,
which is caused by Team C beds being split between floors four and six.

Additionally, while one might hope that the optimal PPN for each team is 4.0
during the day and 6.0 at night, we determine the actual optimal values to be these
nominal nursing staff levels multiplied by the average utilization rate. This adjustment
accounts for off-service patients taking up medicine beds.

7.3. Team census variance

A version of the simulation identical to the reference, except that it implemented
lowest census team assignment, was used to quantify the effect on TCV; four graphs
pertaining to a single indicative run are plotted in Figure 4. These demonstrate that
using the lowest census will greatly reduce the TCV, but consequently increase the
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Table 9. PPN values for the co-location method compared to the values from the

reference simulation.

Start Day End Day Start Night End Night

Reference Simulation 1.5 1.5 1.8 1.9

Co-location
Team A 3.2 3.1 4.4 4.7
Team B 3.2 3.1 4.4 4.7
Team C 3.3 3.1 3.9 4.1

Optimal PPN 3.4 3.4 5.1 5.1

variance for the number of new patients admitted per team. This is expected, since if
one team is discharging a lot of patients they are also going to see more new patients.
However, we feel it is more important to balance overall workload as opposed to the
number of new patients seen.

The impact of the co-location method on TCV compared to the mean reference
value of 6.4 is a reduction to 0.4. A paired t-test provides evidence to reject the null
hypothesis that the average team census variance is the same between the two methods
at a significance level < 0.01.

Figure 4. Comparison of rolling basis vs. lowest census team assignment methods for each team from an

indicative simulation run.

One drawback of the co-location method is that patients may change teams when
they are moved into a medicine bed if one was not available at admission time. Our
simulation shows that team reassignment in this fashion is required one-third of the
time. Ideally, such team changes would occur early in the patient’s stay. This is gen-
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erally the case; our simulation results show 12% of patients change between 12 and 24
hours after admission, and an additional 6% change after more than 24 hours.

8. Discussion

To realize efficiency improvements without impacting the other system performance
metrics, our simulation changes the current patient assignment system in two major
ways. First, we assign each bed a team by geographical groupings according to the
plan presented in Figure 2, so that each team has a specified area for their patients.
Second, if a medicine bed is available, we assign a new patient to the corresponding
team, whereas if none is available the patient is initially assigned to the team with
the lowest census. The patient is then reassigned to another team if the first available
internal medicine bed is associated with another team.

The University Hospital executive leadership has commited to implementing the
co-location method. At this time, the fourth author has submitted a grant proposal
to fund the medical researchers needed to oversee this. For an implementation to be
successful, the model should be reconciled with the following constraints.

Ideally, in the context studied, the team changes should be made prior to assigning
a junior trainee to see the patient and certainly prior to the patient meeting with
the attending physician. For both patients and physicians, continuity of care needs
to be preserved. In other settings, for example those using night float systems where
the on-call juniors are not attached to a specific team, this would be less of an issue
(see Bricker and Markert 2010). In situations where the implementation must sacrifice
either continuity or bed availability, we recommend developing a policy with the physi-
cian teams and testing it over time. One option that prioritizes continuity would be
to make daily corrections based on admissions taking place during the daytime when
a senior medical resident is seeing patients independently, as the designated senior
medical resident is not attached to a team.

For the purposes of this paper, the main aspects of the unit have been captured
to create a reasonably accurate simulation which can be run easily in the Python
programming language. The major limitation that affects this model is that the dis-
tributions for patient inter-arrival times and patient length of stay are unknown.
Nonetheless, it is our perspective that a more refined model would come to the same
conclusions.
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